Aktivitas Antioksidan Hidrolisat Kolagen Kulit Ikan Nila (Oreochromis niloticus)

Antioxidant activity of Tilapia (Oreochromis niloticus) Skin Collagen Hydrolizate

  • Deny Tri Prastyo Departemen Teknologi Hasil Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor
  • Wini Trilaksani Departemen Teknologi Hasil Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor
  • Nurjanah Departemen Teknologi Hasil Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor
Keywords: ABTS, enzim papain, derajat hidrolisis, zeta potensial, ABTS, enzim papain

Abstract

Kulit ikan nila merupakan hasil samping proses pengolahan ikan yang dapat dimanfaatkan sebagai alternatif bahan baku kolagen dan hidrolisatnya. Hidrolisat kolagen diketahui memiliki aktivitas biologis yang potensial diantaranya sebagai antioksidan. Penelitian ini bertujuan untuk menentukan aktivitas antioksidan hidrolisat kolagen dari kulit ikan nila (Oreochromis niloticus) secara in vitro. Penelitian ini terbagi menjadi tiga tahap meliputi fase praperlakuan kolagen, ekstraksi kolagen dan hidrolisis kolagen. Pada proses hidrolisis digunakan enzim papain dengan konsentrasi yang berbeda (4.000 U/g, 6.000 U/g, 8.000 U/g sampel) dengan waktu hidrolisis selama 60, 120 dan 180 menit. Rerata nilai rendemen hidrolisat kolagen kulit ikan nila sebesar 15,17%. Waktu hidrolisis, konsentrasi enzim yang diberikan serta interaksi antar kedua faktor tersebut berpengaruh secara signifikan terhadap nilai derajat hidrolisis dan aktivitas antioksidan hidrolisat kolagen kulit ikan nila. Hidrolisat kolagen kulit ikan nila yang dihidrolisis selama 120 menit dengan pemberian konsentrasi enzim sebesar 8.000 U memiliki rerata persentase derajat hidrolisis sebesar 33,94%, serta rerata nilai IC50 terbaik yakni 93,32 µg/mL, termasuk pada kategori senyawa antioksidan kuat. Nilai zeta potensial hidrolisat kolagen kulit ikan nila adalah -10,9 mV.

References

Ahmed R, Chun BS. 2018. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J. of Supercritical Fluids 141(1):1-35
Baehaki A, Nopianti R, Anggraeni S. 2015. Antioxidant activity of skin and bone collagen hydrolyzed from striped catfish (Pangasius pangasius) with papain enzyme. J of Chemical and Pharmaceutical Research 7(11):131-135
Beveridge AJ. 1996. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases.
Protein Science. 5(7): 1355-1365. Doi: 10.1002/pro.5560050714.
[BKIPM] Badan Karantina Ikan dan Pengendalian Mutu. Statistik Ekspor Nila Tahun 2018 [Internet]. (diunduh pada 10 November 2019) Tersedia pada http://bkipm.kkp.go.id/bkipmnew/?r=stats/#_ops_volume/E/Kg/m//2018//nm_umum/Nila
Blanco M, Vazquez JA, Martin RIP, Sotelo CG. 2017. Hydrolysates of fish skin collagen: an opportunity for valorizing fish industry byproducts. Mar Drugs. 15:131-146
Bougatef, A, Balti R, Haddar A, Jellouli K, Souissi N, Nasri M. 2012. Antioxidant and functional properties of protein hydrolysates of bluefin tuna (Thunnus thynnus) heads as influenced by the extent of enzymatic hydrolysis. Biotechnology and Bioprocess Engineering. 17(4):841–852. doi:10.1007/s12257-012-0053-y.
Chalamaiah M, Kumar B, Hemalatha R. Jyothirmayi T. 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry. 135: 3020-3038.
Correa AP, Daroit DJ, Coelho J, Meira SM, Lopes FC, Segalin J, Risso PH, Brandelli A. 2011. Antioxidant, antihypertensive and antimicrobial properties of ovine caseinate hydrolyzed with microbial protease. J Sci Food Agr. 91: 2247-2254.
Devi HLNA, Suptijah P, Nurilmala M. 2017. Efektifitas alkali dan asam terhadap mutu kolagen dari kulit ikan patin. JPHPI 20(2):255-265
Hadinoto S, Idrus S. 2018. Proporsi dan Kadar Proksimat Bagian Tubuh Ikan Tuna Ekor Kuning (Thunnus albacares) dari Perairan Maluku. Majalah BIAM 14:51-57
Hartina UMR, Annuar QH, Izzreen NMN, Hasmadi M. 2019. Properties of hydrolysed collagen from the skin of milkfish (Chanos chanos) as affected by different enzymatic treatments. IJRSM 6(2):34-41
Hema GS, Joshy CG, Shyni K, Chatterjee NS, Ninan J, Mathew S. 2017. Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization. J Food Sci Technol 54(2):488–496
Jamil NH, Halim NRA, Sarbon NM. 2016. Optimization of enzymatic hydrolysis condition and functional properties of eel (Monopterus sp.) protein using response surface methodology (RSM). International Food Research Journal 23(1):1-9.
Khirzin MH, Sukarno, Yuliana ND, Fawzya YN, Chasanah E. 2015. Aktivitas Inhibitor Enzim Pengubah Angiotensin (ACE) Dan Antioksidan Peptida Kolagen Dari Teripang Gama (Stichopus variegatus). JPB Kelautan dan Perikanan 10(1): 27–35
Kristinsson HG, Rasco BA. 2000. Fish protein hydrolysates: production, biochemical and functional properties. Food Science and Nutrition 40:43-81.
Kucharz EJ. 1992. The collagens: Biochemistry and Pathophysiology. Berlin (DEU): Springer-Verlag.
Lehninger AL. 1982. Dasar-dasar Biokimia Jilid I. Thenawijaya M. penerjemah. Jakarta (ID): Penerbit Erlangga. Terjemahan dari: Principle of Biochemistry.
Liu D, Zhang X, Li T, Yang H, Zhang H, Regenstein JM, Zhou P. 2015. Extraction and characterization of acid- and pepsin-soluble collagens from the scales, skins and swim-bladders of grass carp (Ctenopharyngodon idella). Food Bioscience 9(1):68-74
Lin S, Tian W, Li H, Cao J, Jiang W. 2012. Improving antioxidant activities of whey protein hydrolysates obtained by thermal preheat treatment of pepsin, trypsin, alcalase and flavourzyme. Int. J. Food Sci. Technol. 47:2045–2051.
Lu JM, Lin PH, Yao Q, Chen C. 2010. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. Journal of Cellular and Molecular Medicine. 14:840-860.
Luisi G, Stefanucci A, Zengin G, Dimamito MP, Mollica A. 2018. Antioxidant and tyrosinase inhibitory in vitro activity of amino acids and small peptides: new hints for the multifaceted treatment of neurologic and metabolic disfunctions. Antioxidants Vol 8(1):1-14
Mendis E, Rajapakse N, Kim SK. 2005. Antioxidant properties of radical scavenging peptides purified from enzymatically prepared fish skin gelatin hydrolysates. J Agric Food Chem. 53(3):581-587.
Murray BA, Fitzgerald RJ. 2007. Angiotensin-I converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity and production. Curr Pharm Design Journal. 13(8):773-791.
Nagarajan M, Benjakul S, Prodpran T, dan Songtipya P. 2015. Effect pf pHs on properties of bio-nanocomposite based on tilapia skin gelatin and cloisite Na+. Int. J. Biological Macromolecules. 75(4): 388-387.
Najafian L, Babji AS. 2014. Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. J Functional Foods 9(1):280-289
Peranginangin R, Murniyati, Nurhayati, Rahmad W. 2006. Pengolahan Kolagen dari Kulit Ikan Nila. Jakarta (ID): Penebar Swadaya
Rogowska A, Rafinska K, Pomastowski P, Walczak J, Railean VP, Forajta MB, Buszewski B. Silver nanoparticles functionalized with ampicillin. Electrophoresis 0:1-8
Silvestre MPC, Morais HA, Silva VD, Silva MR, Grau. 2013. Degree of hydrolysis and peptide profile of whey proteins using pancreatin. J Braz Soc Food Nutr. 38(1):278-290.
Tagliazucchi D, Helal A, Verzelloni E, Conte A. 2016. Bovine milk antioxidant properties: effect of in vitro digestion and identification of antioxidant compounds. Dairy Sci. & Technol. 96:657–676
Tan Y, Chang SKC. 2018. Isolation and characterization of collagen extracted from channel catfish (Ictalurus punctatus) skin. Food Chemistry 242:147-155
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. 2007. Free radical and antioxidant in normal physiological function and human disease. Int J Biochem. 39(1):44-84.
Wu RB, Wu CL, Liu D, Yang XH, Huang JF, Zhang J, Liao BQ. 2018. Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chemistry 248:346-352
Wulandari. 2016. Karakterisasi fisikokimia kolagen yang diisolasi dengan metode hidroekstraksi dan stabilisasi nanokolagen kulit ikan gabus (Channa striata) [tesis]. Bogor (ID): Institut Pertanian Bogor
Zhang Y, Karsten O, Alberto G, Jeanette O. 2013. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE inhibitory peptides. Food Chem. 141:2343-2354.
Zhang Y, Liu WT, Li GY, Shi B, Miao YQ, Wu XH. 2007. Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodon idella). Food Chem 103:906–912
Zhao Y, Wang Z, Zhang J, Su T. 2018. Extraction and characterization of collagen hydrolysates from the skin of Rana chensinensis. Biotech 8:181
Żelechowska E, Sadowska M, Turk M. 2010. Isolation and some properties of collagen from the backbone of Baltic cod (Gadus morhua). Food Hydrocolloids. 24: 325–329
Published
2020-11-24