In Vitro and In Situ Degradation Characteristics and Rumen Fermentation Products of Moringa oleifera Harvested at Three Different Ages

A. R. Seradj, H. Morazan, M. Fondevila, J. B. Liang, G. De la Fuente, J. Balcells


Besides the beneficial agronomic properties such as drought tolerance and high biomass production, the high crude protein content of Moringa oleifera (Moringa) makes it comparable to the other high quality forages. This study aimed to evaluate whether Moringa can be an appropriate substitute for alfalfa as a ruminant feed. The study consisted of 4 treatments, namely Moringa leaves harvested at 30 (M30), 40 (M40), and 50 (M50) days after pruning, and alfalfa (Medicago sativa) hay as a control. Simultaneously, their organic matter digestibilities and fermentation characteristics were analyzed by in vitro gas production technique and rumen dry matter and protein degradability kinetics were analyzed by using the nylon bags (in situ) procedure. The results of in vitro study revealed that the potential cumulative gas production for Moringa sample harvested at 30 days after pruning was higher than that of alfalfa while the rate of gas production and the concentrations of ammonia and volatile fatty acids (VFA) in Moringa were similar to alfalfa. Moringa harvested at different times had higher in vitro organic matter digestibility (IVOMD) and metabolizable energy (ME) content as compared with alfalfa. Despite the apparent higher soluble fraction (a) and the fractional degradation rate (c) in the Moringa samples of various ages than those for alfalfa, the differences were not significant. However, in situ potentially degradable fraction (b) for DM and CP of Moringa harvested at different ages were higher than those of alfalfa (P<0.05). The in vitro fermentation and in situ degradation parameters suggested high similarities in the kinetics of gas production (i.e. a, b, and c) and DM degradation pattern among the three different cutting ages of Moringa and nutritionally they were comparable to alfalfa. In conclusion, alfalfa could be replaced with Moringa leaves in diet of ruminant animal without any adverse effect.


Adeleke, O., O. Q. Adiamo, O. S. Fawale, & G. Olamiti. 2017. Effect of soaking and boiling on anti-nutritional factors, oligosaccharide contents and protein digestibility of newly developed bambara groundnut cultivars. Turkish JAF. Sci.Tech. 5:1006-1014.

Anele, U. Y., O. M. Arigbede, K. H. Südekum, A. O. Oni, A. O. Jolaosho, J. A. Olanite, A. I. Adeosun, P. A. Dele, K. A. Ike, & O. B. Akinola. 2009. Seasonal chemical composition, in vitro fermentation and in sacco dry matter degradation of four indigenous multipurpose tree species in Nigeria. Anim. Feed Sci. Technol. 154:47-57.

AOAC. 2010. Official Methods of Analysis. 18th ed. Assoc. Off. Anal.Chem., Arlington, VA.

Astuti, D. A., A. S. Baba, & I. W. Wibawan. 2012. Rumen fermentation, blood metabolites, and performance of sheep fed tropical browse plants. Med. Pet. 34:201-206.

Dey, A., S. S. Paul, P. Pandey, & R. Rathore. 2014. Potential of Moringa oleifera leaves in modulating in vitro methanogenesis and fermentation of wheat straw in buffalo. Indian J. Anim. Sci. 84:533-538.

Fitri, A., T. Toharmat, D. A. Astuti, & H. Tamura. 2015. The potential use of secondary metabolites in Moringa oleifera as an antioxidant source. Med. Pet. 38:169-175.

Gupta, K., G. K. Barat, D. S. Wagle, & H. K. L. Chawla. 1989. Nutrient contents and antinutritional factors in conventional and non-conventional leafy vegetables. Food Chem. 31:105-116.

Jahani-Azizabadi, H., M. D. Mesgaran, R. Valizadeh, & H. N. Moghaddam. 2009. Comparison of in vivo with in situ mobile bag and three step enzymatic procedures to evaluate protein disappearance of alfalfa hay and barley grain. Iran. J. Vet. Res. 10:260-266.

Kulivand, M. & F. Kafilzadeh. 2015. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Sci. Anim. Sci. 37:9-14.

Melesse, A., H. Steingass, J. Boguhn, & M. Rodehutscord. 2013. In vitro fermentation characteristics and effective utilisable crude protein in leaves and green pods of Moringa stenopetala and Moringa oleifera cultivated at low and mid-altitudes. J. Anim. Physiol. Anim. Nutr. 97:537-546.

Müller, C. E. 2011. Equine ingestion of haylage harvested at different plant maturity stages. Appl. Anim. Behav. Sci. 134:144-151.

Odee, D. 1998. Forest biotechnology research in drylands of Kenya: The development of Moringa species. Dryland Biodiversity 2:7-8.

Ørskov, E. R. & I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503.

Pashaei, S., V. Razmazar, & R. Mirshekar. 2010. Gas production: a proposed in vitro method to estimate the extent of digestion of a feedstuff in the rumen. J. Biol. Sci. 10:573-580.

Sánchez, N. R., E. Spörndly, & I. Ledin. 2006. Effect of feeding different levels of foliage of Moringa oleifera to creole dairy cows on intake, digestibility, milk production and composition. Livest. Sci. 101:24-31.

Seradj, A. R., L. Abecia, J. Crespo, D. Villalba, M. Fondevila, & J. Balcells. 2014. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim. Feed Sci. Technol. 197:85-91.

Seradj, A. R., J. Balcells, H. Morazan, J. Alvarez-Rodriguez, D. Babot, & G. De la Fuente. 2018a. The impact of reducing dietary crude protein and increasing total dietary fiber on hindgut fermentation, the methanogen community and gas emission in growing pigs. Anim. Feed Sci. Technol. 245:54-66.

Seradj, A. R., A. Gimeno, M. Fondevila, J. Crespo, R. Armengol, & J. Balcells. 2018b. Effects of the citrus flavonoid extract Bioflavex or its pure components on rumen fermentation of intensively reared beef steers. Anim. Prod. Sci. 58:553-560.

Sultana, N., A. R. Alimon, K. S. Haque, A. Q. Sazili, H. Yaakub, & S. M. J. Hossain. 2014. The effect of cutting interval on yield and nutrient composition of different plant fractions of Moringa oleifera tree. J. Food Agric. Environ. 12:599-604.

Tjørve, K. M. C., & E. Tjørve. 2017. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLOS ONE. 12:e0178691.

Ülger, I., M. Kaliber, T. Aya_an, & O. Küçük. 2018. Chemical composition, organic matter digestibility and energy content of apple pomace silage and its combination with corn plant, sugar beet pulp and pumpkin pulp. S. Afr. J. Anim. Sci. 48:497-503.


A. R. Seradj
H. Morazan
M. Fondevila
J. B. Liang
G. De la Fuente
J. Balcells (Primary Contact)
SeradjA. R., MorazanH., FondevilaM., LiangJ. B., De la FuenteG., & BalcellsJ. (2019). In Vitro and In Situ Degradation Characteristics and Rumen Fermentation Products of Moringa oleifera Harvested at Three Different Ages. Tropical Animal Science Journal, 42(1), 39-45.

Article Details