L-carnitine Supplementation Enhances Nuclear and Cytoplasmic Maturation Rates of Sheep Oocytes In Vitro

  • Z. W. Bhakty Biology of Reproduction, Graduate School of IPB University
  • E. M. Kaiin Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI)
  • N. W. K. Karja Department of Veterinary Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University
  • M. A. Setiadi Department of Veterinary Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University
Keywords: fertilization, l-carnitine, maturation, oocyte, sheep

Abstract

The aim of the present study was to determine the effectiveness of l-carnitine (LC) supplementation on nuclear and cytoplasmic maturation rates of sheep oocytes. In experiment 1, oocytes were maturated for 24 hours in tissue culture medium 199 supplemented with LC at doses of 0.3 mg/mL, 0.6 mg/mL, and 0.9 mg/mL. In experiment 2, oocytes were maturated and fertilized in a media supplemented with LC at a dose of 0.3 mg/mL and incubated with 5x106 sperm/mL for 12 hours. The treatment group consisted of LC supplementation only in maturation medium (P1), only in fertilization medium (P2), and in both maturation and fertilization media (P3). In experiment 3, sperm motility patterns were assessed using CASA after being exposed to fertilization medium supplemented with LC at a dose of 0.3 mg/mL for 0 and 3 hours. Our results showed that supplementation of LC at a dose of 0.3 mg/mL significantly (p<0.05) increased the percentage of oocytes reaching metaphase II (86.7±4.1%) compared to those supplemented with LA at doses of 0, 0.6, and 0.9 mg/mL (73.6±1.2, 81.4±1.3%, and 70.5±1.6%, respectively). The LC treatment in the fertilization medium only did not influence the number of two pronuclear formations (62.1±2.5%) compared to supplementation either in the maturation medium only (72.0±4.7%) or a combination of both in maturation and fertilization media (68.2±2.7%) (p<0.05). Further results after 3 hours of incubation compared to the control group showed the total motility (24.8±2.04% vs. 17.49±2.37%), progressive motility (14.17±2.03% vs. 6.49±1.64%), and curvilinear velocity (VCL) (119.70±3.73% vs. 71.15±10.59%) (p<0.05) were increased in the fertilization medium containing LC but it did not improve the fertilization rate. It is concluded that supplementation of LC at a dose of 0.3 mg/mL in the maturation medium only could better improve the nuclear and cytoplasmic maturation rates of sheep oocytes.

Downloads

Download data is not yet available.

References

Agarwal, A., P. Sengupta, & D. Durairajanayagam. 2018. Role of L-carnitne in female infertility. Reprod. Biol. Endocrinol. 16:2-18. https://doi.org/10.1186/s12958-018-0323-4

Curnow, E. C., J. P. Ryan, D. M. Saunders, & E. S. Hayes. 2010. Oocytes glutathion and fertilization outcome of Macaca nemestrina and Macaca fascicularis in in vivo- and in vitro-matured oocytes. Reprod. Fertil. Dev. 22:1032-1040. https://doi.org/10.1071/RD09308

Dokmeci, D. 2005. Oxidative stress, male infertility and the role of carnitines. Folia Med. 47:26-30.

Dunning, K. R., K. Cashman, D. L. Russell, J. G. Thompson, R. J. Norman, & R. L. Robker. 2010. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 83:909-918. https://doi.org/10.1095/biolreprod.110.084145

Dunning, K. R. & R. L. Robker. 2017. The role of l-carnitine during oocyte in vitro maturation: Essential co-factor. Anim. Reprod. 14:469-475. https://doi.org/10.21451/1984-3143-AR988

Egashira, J., Y. Iraha, H. Khatun, Y. Wada, T. Konno, H. Tatemoto, & K. Yamanaka. 2019. Efficient in vitro embryo production using in vivo-matured oocytes from superstimulated Japanese black cows. J. Reprod. Dev. 65:183-190. https://doi.org/10.1262/jrd.2018-155

El-Raey, M. & T. Nagai. 2014. Different aspect of cattle in vitro maturation. J. Reprod. Infertil. 5:1-13.

Fathi, M. & K. H. El-Shahat. 2017. L-carnitine enhance oocyte maturation and improves in vitro development of embryos in dromedary camels (Camelus dromedaries). Theriogenology. 104:18-22. https://doi.org/10.1016/j.theriogenology.2017.08.006

Goncalves. F. S, L. S. S. Barretto, R. P. Arruda, S. H. V. Perri, & G. Z. Mingoti. 2010. Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reprod. Dom. Anim. 45:129-135. https://doi.org/10.1111/j.1439-0531.2008.01272.x

Holubcová, Z., D. Kyjovská, M. Martonová, D. Páralová, T. Klenková, P. Otevřel, R. Štĕpánová, S. Kloudová, & A. Hampl. 2019. Egg maturity assessment prior to ICSI prevents premature fertilization of late maturing oocytes. J. Assist. Reprod. Genet. 36:445-452. https://doi.org/10.1007/s10815-018-1393-0

Itoi, F., Y. Tamaki, S. Ohnishi, E. Araki, Y. Ogasawara, K. Aihara, H. Sato, K. Nishikawa, M. Ohmoto, Y. Otani, H. Sakaguchi, & T. Isobe. 2018. A study on the relationship between the fertilization rate in IVF and the mechanical energy of sperm. J. Pregnancy Reprod. 2:1-4. https://doi.org/10.15761/JPR.1000142

Jiang, W, Y. Li, Y. Zhao, Q. Gao, Q. Jin, C. Yan, & Y. Xu. 2020. L-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes. Theriogenology. 143:64-73. https://doi.org/10.1016/j.theriogenology.2019.11.036

Jeulin, C. & L. M. Lewin. 1996. Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa. Hum. Reprod. Update. 2:87–102. https://doi.org/10.1093/humupd/2.2.87

Kelek, S. E., E. Afşar, G. Akcay, B. Danisman, & M. Aslan. 2019. Effect of chronic l-carnitine supplementation on carnitine levels, oxidative stress and apoptitic markers in peripheral organs of adult wistar rats. Food Chem. Toxicol. 134:1-7. https://doi.org/10.1016/j.fct.2019.110851

Leoni, G. G., M. G. Palmerini, V. Satta, S. Succu, V. Pasciu, A. Zinellu, C. Carru, G. Macchiarelli, S. A. Nottola, S. Naitana, & F. Berlinguer. 2015. Differences in the kinetic of the first meiotic division and in active mitochondrial distribution between prepubertal and adult oocytes mirror differences in their developmental competence in a sheep model. PloS One. 10:e0124911. https://doi.org/10.1371/journal.pone.0124911

Lobo, V., A. Pati, A. Phatak, & N. Chandra. 2010. Free radicals, antioxidants and functional food: Impact on human health. Pharmacogn. Rev. 4:118-126. https://doi.org/10.4103/0973-7847.70902

Lopes, A. S., M. Lane, & J. G. Thompson. 2010. Oxygen consumption and ros production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum. Reprod. 25:2762-2773. https://doi.org/10.1093/humrep/deq221

Mansour, G.H., H. Abdelrazik, R. K. Sharma, E. Radwan, T. Falcone, & A. Agarwal. 2019. L-carnitine supplementation reduces oocyte cytoskeleton damage and embryo apoptosis induced by incubation in peritoneal fluid form patients with endometriosis. Fertil. Steril. 91:2079-2086. https://doi.org/10.1016/j.fertnstert.2008.02.097

Opuwari, C. S & R. R. Henkel. 2016. An update on oxidative damage to spermatozoa and oocytes. Biomed. Res. Int. 2016:9540142. https://doi.org/10.1155/2016/9540142

Paramio, MT., & D. Izquierdo. 2014. Current status of in vitro embryo production in sheep and goats. Reprod. Dom. Anim. 49:37-48. https://doi.org/10.1111/rda.12334

Phongmitr, T., Y. Liang, K. Srirattana, K. Panyawai, N. Sripunya, C. Treetampinich, & R. Parnpai. 2013. Effects of L-carnitine supplemented in maturation medium on the maturation rate of swamp buffalo oocytes. Buffalo Bull. 32:613-616.

Reader, K. L., J. Stanton, & J. L. Juengel. 2017. The role of oocyte organelles in determining developmental competence. Biology. 6:1-22. https://doi.org/10.3390/biology6030035

Riyuska, A., N. W. K. Karja, & M. A. Setiadi. 2019. Efficacy of leptin supplementation on nuclear maturation and fertilization rate of sheep oocyte. Trop. Anim. Sci. J. 42:1-5. https://doi.org/10.5398/tasj.2019.42.1.1

Shafiei, G., M. Almasi, H. Nikzad, J. Miyan, J. A. Mahabadi, & G. Moshkdanian. 2020. L-carnitine reduces the adverse effect of ROS and up-regulates the expression of implantation related genes in in vitro developed mouse embryos. Theriogenology. 145:59-66. https://doi.org/10.1016/j.theriogenology.2020.01.008

Shirazi, A. & Sadeghi, N. 2007. The effect of ovine oocyte diameter on nuclear maturation. Small Rumin. Res. 69:103-107. https://doi.org/10.1016/j.smallrumres.2005.12.022

Somfai, T., M. Kaneda, S. Akagi, S. Watanabe, S. Haraguchi, E. Mizutani, & T. Q. D. Nguyen. 2011. Enhancement of lipid metabolism with L-carnitine during in vitro maturation improves nuclear maturation cleavage ability of follicular porcine oocytes. Reprod. Fertil. Dev. 23:912–920. https://doi.org/10.1071/RD10339

Sovergino, T.C., P. R. Adona, P. S. Monzani, S. Guemra, F. D. A. Barros, F. G. Lopes, & C. L. V. Leal. 2017. Effects of supplementation of medium with different antioxidant during in vitro maturation of bovine oocyte on subsequent embryo production. Reprod. Domest. Anim. 52:561-569. https://doi.org/10.1111/rda.12946

Spinaci, M., D. Bucci, V. Muccilli, N. Cardullo, C. Nerozzi, G. Galeati. 2019. A polyphenol-rich extract from an oenologicaloak-derived tannin influences in vitro maturation of porcine oocytes. Theriogenology. 129:82-89. https://doi.org/10.1016/j.theriogenology.2019.02.017

Suzuki, K., B. Eriksson, H. Shimizu, T. Nagai, & H. Rodriguez-Martinez. 2000. Effect of hyaluronan on monospermic penetration of porcine oocytes fertilized in vitro. Int. J. Androl. 23:13-21. https://doi.org/10.1046/j.1365-2605.2000.t01-1-00198.x

Terada, S., T. Nishiramura, M. Sasaki, H. Yamada, & M. Miki. 2002. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including hybridoma. Cytotechnology. 40:3-12. https://doi.org/10.1023/A:1023993400608

Troung, T. & D. K. Gerdner. 2017. Antioxidants improve IVF outcome and subsequent embryo development in the mouse. Hum. Reprod. 32:2404-2413. https://doi.org/10.1093/humrep/dex330

Varghese, A. C., K. D. Ly, C. Corbin, J, Mendiola, & A. Agarwal. 2011. Oocyte developmental competence and embryo development: Impact of lifestyle and environmental risk factors. Reprod. Biomed. Online. 22:410-420. https://doi.org/10.1016/j.rbmo.2010.11.009

Vivancos, P. D., T. Wolff, J. Markovic, F. V. Pallardo, & C. H. Foyer. 2010. A nuclear glutathione cycle within the cell cycle. Biochem. J. 431:169-178. https://doi.org/10.1042/BJ20100409

Wang, S., G. He, M. Chen, T. Zou, W. Xu, & X. Liu. 2017. The role of antioxidant enzymes in the ovaries. Oxid. Med. Cell. Longev. 2017:4371714. https://doi.org/10.1155/2017/4371714

Wu, G. Q., B. Y. Jia, J. J. Li, X. W. Fu, B. G. Zhou, Y. P. Hou, & S. E. Zhu. 2011. L-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology. 76:785-793. https://doi.org/10.1016/j.theriogenology.2011.04.011

Zare, Z., R. M. Farahani, M. Salehi, A. Priryaei, M. G. Novin, F. F. Fathabadi, M. Mohammadi, & M. Dehghani-Mohammadabadi. 2015. Effect of L-carnitine on maturation and early embryo development of immature mouse oocytes selected by brilliant cresyle bule staining. J. Assist. Reprod. Genet. 32:635-643. https://doi.org/10.1007/s10815-015-0430-5

Published
2021-05-26
How to Cite
Bhakty, Z. W., Kaiin, E. M., Karja, N. W. K., & Setiadi, M. A. (2021). L-carnitine Supplementation Enhances Nuclear and Cytoplasmic Maturation Rates of Sheep Oocytes In Vitro. Tropical Animal Science Journal, 44(2), 131-137. https://doi.org/10.5398/tasj.2021.44.2.131