Extraction of Collagen from the Skin of Kacang Goat and Production of Its Hydrolysate as an Inhibitor of Angiotensin Converting Enzyme

  • T. R. Hakim Graduate Program, Faculty of Animal Science, Universitas Gadjah Mada
  • A. Pratiwi Department of Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada
  • Jamhari Jamhari Department of Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada
  • N. A. Fitriyanto Department of Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada
  • Rusman Rusman Department of Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada
  • M. Z. Abidin Department of Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada
  • D. N. Matulessy Department of Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada
  • Y. Erwanto Universitas Gadjah Mada
Keywords: antihypertensive, chymotrypsin, collagen of goat skin, hydrolysate, IC50

Abstract

The study was designed to determine the potential of collagen hydrolysate produced from the skin of Kacang goat through chymotrypsin hydrolysis to be used as an inhibitor of angiotensin converting enzyme (ACE). This research was conducted in three replications, with the measured parameters include ACE inhibitory potential and collagen hydrolysate fractionation. The results showed that collagen extraction of Kacang goat skin by chymotrypsin hydrolysis yielded 9.74% (dry matter, v/v) collagen, with pH at 6.6. The extracted collagen contained α1, α2, and β collagen chains with molecular weights of 151 kDa, 141 kDa, and 240 kDa, respectively. Furthermore, the collagen hydrolysis produced protein peptides confirmed at molecular weights of 43 to 107 kDa. The hydrolysate fractionation at molecular weights of <3 kDa, 3-5 kDa, and >5 kDa showed proteins concentrations of 2.33 mg/mL, 3.81 mg/mL, and 3.93 mg/mL, respectively. The hydrolysate fractionation with molecular weight <3 kDa showed to have ACE inhibition activity with the IC50 value of 0.47 mg/mL. The study concluded that collagen hydrolysate extracted from the skin of Kacang goat had a promising potential as a source of antihypertensive agent.

Downloads

Download data is not yet available.

References

Ajayi, E. O. B. & S. F. Akomolafe. 2016. A comparative study on nutritional composition, mineral content and amino acid profile of the skin of four different animals. Food Sci. Nutr. 2:1-7. https://doi.org/10.24966/FSN-1076/100012

Alfaro, A. D. T., G. G. Fonseca, E. Balbinot, A. Machado, & C. Prentice. 2013. Physical and chemical properties of Wami tilapia skin gelatin. Food Sci. Technol. 33:592-595. https://doi.org/10.1590/S0101-20612013005000069

AOAC. 1990. Official Methods of Analysis. The Association of Official Analytical Chemists. 15th ed. William Horwith (Ed) Benjamin Franklin Station, Washington DC.

Bravo, F. I., A. M. Capdevila, M. Margalef, A. A. Arnal, & B. Muguerza. 2019. Novel antihypertensive peptides derived from chicken foot proteins. Mol. Nutr. Food Res. 63:1-8. https:/doi.org/10.1002/mnfr.201801176.

Badan Standarisasi Nasional. 2014. Kolagen Kasar dari Sisik Ikan- Syarat Mutu dan Pengolahan- SNI 8076-2014. Badan Standarisasi Nasional, Jakarta.

Chuck-Hernández, C. & C. Ozuna. 2019. Chapter 5-Protein Isolates from Meat Processing by-Products. In: Charis M. Galanakis (Ed.). Proteins: Sustainable Source, Processing and Applications. p.131-162. https://doi.org/10.1016/B978-0-12-816695-6.00005-2

Espejo-Carpio, F. J., C. D. Gobba, A. Guadix, E. M. Guadix, & J. Otte. 2013. Angiotensin i-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions. Int. Dairy J. 32:175-183. https:/doi.org/10.1016/j.idairyj.2013.04.002

Hsueh, W. A. & K. Wyne. 2011. Renin-angiotensin-aldosterone system in diabetes and hypertension. J. Clin. Hypertens. 13:224-237. https:/doi.org/10.1111/j.1751-7176.2011.00449.x

Iltchenco, S., A. P. Kempka, & R. C. Prestes. 2017. Profiles of enzymatic hydrolysis of different collagens and derivatives over time. Revista Brasileira de Tecnologia Agroindustrial. 11:2165-2185. https://doi.org/10.3895/rbta.v11n1.2755

Jamhari, L. M. Yusiati, E. Suryanto, M. N. Cahyanto, Y. Erwanto, & M. Muguruma. 2013. Comparative study on angiotensin converting enzyme inhibitory activity of hydrolysate of meat protein of Indonesian local livestocks. J. Indones. Trop. Anim. Agric. 38:27-33. https://doi.org/10.14710/jitaa.38.1.27-33

Kasim, A., D. Novia, S. Mutiar, & J. Pinem. 2013. Karakterisasi kulit kambing pada persiapan penyamakan dengan gambir dan sifat kulit tersamak yang dihasilkan. Majalah Kulit, Karet dan Plastik 29:1-12. https://doi.org/10.20543/mkkp.v29i1.213

Khiari, Z., M. Ndagijimana, & M. Betti. 2014. Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poult. Sci. 93:2347-2362. https://doi.org/10.3382/ps.2014-03953

León-López, A., L. F. Jiménez, A. D. H. Fuentes, R. G. C. Montiel, & G. Aguirre-álvarez. 2019. Hydrolysed collagen from sheepskins as a source of functional peptides with antioxidant activity. Int. J. Mol. Sci. 20:3931. https://doi.org/10.3390/ijms20163931

Liu, M., M. Du, Y. Zhang, W. Xu, C. Wang, K. Wang, & L. Zhang. 2013. Purification and identification of an ace inhibitory peptide from walnut protein. J. Agric. Food Chem. 60:4097-4100. https://doi.org/10.1021/jf4001378

Lodhi, G., Y. S. Kim, E. K. Kim, J. W. Hwang, H. S. Won, W. Kim, S. H. Moon, B. T. Jeon, & P. J. Park. 2018. Isolation and characterisation of acid- and pepsin-soluble collagen from the skin of cervus korean temminck var. mantchuricus swinhoe. Animal Prod. Sci. 58:585-594. https://doi.org/10.1071/AN16143

Luderman, L. N., G. Unlu, & E. W. Knapik. 2017. Zebrafish developmental models of skeletal diseases. Curr. Top. Dev. Biol. 124:81-124. https://doi.org/10.1016/bs.ctdb.2016.11.004

Martínez-Ortiz, M. A., A. D. H. Fuentes, D. J. P. González, R. G. C. Montiel, A. V. Torres, & G. A. Álvarez. 2015. Extraction and characterization of collagen from rabbit skin: partial characterization. CYTA J. Food. 13:253-258. https://doi.org/10.1080/19476337.2014.946451

Muyonga, J. H., C. G. B. Cole, & K. G. Duodu. 2004. Fourier transform infrared (ftir) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile Perch (Lates niloticus). J. Food Chem. 86:325-332. https://doi.org/10.1016/j.foodchem.2003.09.038

Naffa, R., G. E. Norris, & G. Holmes. 2019. Insights into the molecular composition of the skin and hide used in leather manufacture. J. Am. Leather Chem. Assoc. 114:29-37.

Noorzai, S., C. J. R. Verbeek, M.C. Lay, & J. Swan. 2020. Collagen extraction from various waste bovine hide sources. Waste Biomass Valorization. 11:5687-5698. https://doi.org/10.1007/s12649-019-00843-2

Permadi, E., J. Jamhari, E. Suryanto, Z. Bachruddin, & Y. Erwanto. 2019. The potential of hydrolysate from rabbit meat protein as an angiotensin converting enzyme inhibitor. Buletin Peternak. 43:31-37. https://doi.org/10.21059/buletinpeternak.v43i1.31495

Sujarwanto, R. O., Jamhari, E. Suryanto, Rusman, Setiyono, E. Triyannanto, Y. Erwanto & R. Yuliatmo. 2018. Increased inhibition of angiotensin converting enzyme (ace) obtained from indonesian buffalo meat protein using sep-pak plus c18. Pak. J. Nutr. 17:434-440. https://doi.org/10.3923/pjn.2018.434.440

Sadeghi, S., M. Darvish, M. Sedighi, S. O. R. Siadat, & H. Jalili. 2019. Enzymatic hydrolysis of microalgae proteins using serine proteases: A study to characterize kinetic parameters. J. Food Chem. 284:334-339. https://doi.org/10.1016/j.foodchem.2019.01.111

Tabarestani, H. S., Y. Maghsoudlou, A. Motamedzadegan, A. R. S. Mahoonak, & H. Rostamzad. 2012. Study on some properties of acid-soluble collagens isolated from fish skin and bones of rainbow trout (Onchorhynchus mykiss). Int. Food Res. J. 19:251-257.

Vidal, A. R., R. L. Cansian, R. O. Mello, E. H. Kubota, I. M. Demiate, A. A. F. Zielinski, & R. C. P. Dornelles. 2019a. Effect of ultrasound on the functional and structural properties of hydrolysates of different bovine collagens. Food Sci. Technol. 40:346-353. https://doi.org/10.1590/fst.00319

Vidal, A. R., L. P. Duarte, M. M. Schmidt, R. L. Cansian, I. A. Fernandes, R. O. Mello, I. M. Demiate, & R. C. P. Dornelles. 2019b. Extraction and characterization of collagen from sheep slaughter by-products. Waste Manag. 102:838-846. https://doi.org/10.1016/j.wasman.2019.12.004

Wahyuningsih, R., A. Pertiwiningrum, A. Rohman, N. A. Fitriyanto, & Y. Erwanto. 2018. Optimization of conditions for extraction of pepsin-soluble collagen from Indonesian local “ Kacang “ goatskin by response surface methodology. Am. J. Anim. Vet. Sci. 13:70-75. https://doi.org/10.3844/ajavsp.2018.70.75

Widodo, H. S., T. W. Murti, A. Agus, & W. Widodo. 2019. Mengidentifikasi peptida bioaktif angiotensin converting enzyme-inhibitor (acei) dari kasein β susu kambing dengan polimorfismenya melalui teknik in silico. Jurnal Aplikasi Teknologi Pangan. 7:180-185. https://doi.org/10.17728/jatp.3008

Winarti, A., F. Rahmawati, N.A. Fitriyanto, J. Jamhari, & Y. Erwanto. 2019. Hydrolyzation of duck meat protein using Bacillus cereus td5b protease, pepsin, trypsin and their potency as an angiotensin converting enzyme inhibitor. J. Indones. Trop. Anim. Agric. 44:266-276. https://doi.org/10.14710/jitaa.44.3.266-276

Wolf, P. 1983. A Critical reappraisal of waddell’s technique for ultraviolet spectrophotometric protein estimation. Anal. Biochem. 129:145-155. https://doi.org/10.1016/0003-2697(83)90062-3

Yuliatmo, R., N. A. Fitriyanto, Z. Bachruddin, Supadmo, Jamhari, & Y. Erwanto. 2017. Increasing of angiotensin converting enzyme inhibitory derived from chicken leg. Int. Food Res. J. 24:1799-1804

Published
2021-06-01
How to Cite
Hakim, T. R., Pratiwi, A., Jamhari, J., Fitriyanto, N. A., Rusman, R., Abidin, M. Z., Matulessy, D. N., & Erwanto, Y. (2021). Extraction of Collagen from the Skin of Kacang Goat and Production of Its Hydrolysate as an Inhibitor of Angiotensin Converting Enzyme. Tropical Animal Science Journal, 44(2), 222-228. https://doi.org/10.5398/tasj.2021.44.2.222