The Use of Teat-End Hyperkeratosis to Predict Somatic Cell Count and Milk Quality of Holstein Cows Raised in Egypt

  • S. Abdelghany Department of Animal Production, Faculty of Agriculture, Cairo University
  • N. Fahim Department of Animal Production, Faculty of Agriculture, Cairo University
  • F. Samir Department of Animal Production, Faculty of Agriculture, Cairo University
  • M. Radwan Department of Animal Production, Faculty of Agriculture, Cairo University
Keywords: hyperkeratosis, milk quality, Holstein; Egypt, somatic cell count


The study aimed to investigate the association between teat-end hyperkeratosis (THK) and somatic cell count (SCC) and to assess the effect of SCC on milk yield, fat, and protein percentages of Holstein cows. A total of 740 udder quarters of 185 Holstein cows kept in three commercial herds in Egypt were enrolled in the study from May to September 2019. Foremilk samples were collected from udder quarters for assessing milk SCC, fat, and protein percentages. On the same cows, a digital picture of each teat end orifice was taken with a digital camera. Cows’ teats were assessed for THK and classified into two different groups of hyperkeratosis; mild and severe THK. SCC was converted to five classes of somatic cell score (SCS). Simple linear regression was performed to determine the loss of milk yield, fat, and protein percentages. SCC was significantly affected by THK (p<0.0001). About 57% of teats were classified as mild THK and 43% as severe THK. The teats with severe THK recorded higher SCC in milk. It was observed that SCS had a significant effect on fat and protein percentages (p<0.0001). A similar trend was shown for the effect of SCS on milk yield (p<0.05), where the highest values of milk traits were obtained for the lowest SCS. The loss of milk was 220 g/day. Also, fat and protein percentages decreased by 0.11% and 0.08%, respectively, for each unit increase in SCS, from zero to four. In conclusion, severe THK can lead to high SCC, which negatively affects milk traits.


Download data is not yet available.


Alhussien, M. N. & A. K. Dang. 2018a. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World. 11:562-577.

Alhussien, M. N. & A. K. Dang. 2018b. Diurnal rhythm in the counts and types of milk somatic cells, neutrophil phagocytosis and plasma cortisol levels in Karan Fries cows during different seasons and parity. Biol. Rhythm Res. 49:187-199.

Ali, A. K. A. & G. E. Shook. 1980. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 63:487-490.

Asadpour, R., H. Bagherniaee, M. Houshmandzad, H. Fatehi, A. Rafat, K. Nofouzi, & K. Maftouni. 2015. Relationship between teat end hyperkeratosis with intra mammary infection and somatic cell counts in lactating dairy cattle. Rev. Med. Vet. 166:266-270.

Badiuzzaman, M., M. A. Samad, S. H. M. F. Siddiki, M. T. Islam, & S. Saha. 2015. Subclinical mastitis in lactating cows: Comparison of four screening tests and effect of animal factors on its occurrence. Bangladesh J. Vet. Med. 13:41-50.

Bar, D., Y. T. Gröhn, G. Bennett, R. N. González, J. A. Hertl, H. F. Schulte, L. W. Tauer, F. L. Welcome, & Y. H. Schukken. 2007. Effect of repeated episodes of generic clinical mastitis on milk yield in dairy cows. J. Dairy Sci. 90:4643-4653.

Bogucki, M. 2018. Effect of lactation stage and milking frequency on milk yield from udder quarters of cows. S. Afr. J. Anim. Sci. 48:636-642.

Cardozo, L. L., A. Thaler Neto, G. N. Souza, L. C. A. Picinin, N. C. Felipus, N. L. M. Reche, F. A. Schmidt, D. Werncke, & E. E. Simon. 2015. Risk factors for the occurrence of new and chronic cases of subclinical mastitis in dairy herds in southern Brazil. J. Dairy Sci. 98:7675-7685.

De Vliegher, S., L. K. Fox, S. Piepers, S. McDougall, & H. W. Barkema. 2012. Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. J. Dairy Sci. 95:1025-1040.

Egyptian Standards of Raw Milk. 2010. Raw milk specification, Egyptian organization for standardization and quality control. Ministry of Industry, Egypt. No. 7123.

Emre, B. & E. Alaçam. 2015. The occurrence of teat hyperkeratosis in cows and its effect on milk somatic cell counts. Turkiye Klin. J. Vet. Sci. 6:1-6.

Feltes, G. L., V. T. Michelotti, A. M. Prestes, A. P. Bravo, C. Bondan, M. D. A. Dornelles, F. C. Breda, & P. R. N. Rorato. 2016. Milk production and percentages of fat and protein in Holstein breed cows raised in Rio Grande do Sul, Brazil. Cienc. Rural. 46:700-706.

Franzoi, M., C. L. Manuelian, M. Penasa, & M. De Marchi. 2019. Effects of somatic cell score on milk yield and mid-infrared predicted composition and technological traits of Brown Swiss, Holstein Friesian, and Simmental cattle breeds. J. Dairy Sci. 103:791-804.

Guarín, J. F., M. G. Paixão, & P. L. Ruegg. 2017. Association of anatomical characteristics of teats with quarter-level somatic cell count. J. Dairy Sci. 100:643-652.

Gurmessa, J. & A. Melaku. 2012. Effect of lactation stage, pregnancy, parity and age on yield and major components of raw milk in bred cross Holstein Friesian cows. World J. Dairy Food Sci. 7:146-149.

Halasa, T., M. Nielen, A. P. W. De Roos, R. Van Hoorne, G. De Jong, T. J. G. M. Lam, T. Van Werven, & H. Hogeveen. 2009. Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. J. Dairy Sci. 92:599-606.

Heinrichs, J., C. Jones, & K. Bailey. 2016. Milk components: Understanding milk fat and protein variation in your dairy herd. [3 August 2018].

Juozaitiene, V., A. Juozaitis, J. Zymantiene, V. Oberauskas, A. Aniulienė, L. Kajokienė, A. Yilmaz, & A. Simokaitienė. 2019. The effect of different levels of teat-end hyperkeratosis on mammary infrared thermograph and mastitis in dairy cows. Ankara Univ. Vet. Fak. Derg. 66:21-26.

Khatun, M., R. M. Bruckmaier, P. C. Thomson, J. House, & S. C. García. 2019. Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection. J. Dairy Sci. 102:9200-9212.

Kul, E., A. Şahin, S. Atasever, E. Uğurlutepe, & M. Soydaner. 2019. The effects of somatic cell count on milk yield and milk composition in Holstein cows. Vet. Arh. 89:143-154.

Le Maréchal, C., R. Thiéry, E. Vautor, & Y. Le Loir. 2011. Mastitis impact on technological properties of milk and quality of milk products-a review. Dairy Sci. Technol. 91:247-282.

Manzi, M. D. P., D. B. Nobrega, P. Y. Faccioli, M. Z. Troncarelli, B. D. Menozzi, & H. Langoni. 2012. Relationship between teat-end condition, udder cleanliness and bovine subclinical mastitis. Res. Vet. Sci. 93:430-434.

Mein, G. A., F. Neijenhuis, W. F. Morgan, D. J. Reinemann, J. E. Hillerton, J. R. Baines, I. Ohnstad, M. D. Rasmussen, L. Timms, J. S. Britt, R. Farnsworth, N. Cook, & T. Hemling. 2001. Evaluation of Bovine Teat Condition in Commercial Dairy Herds: 1. Non-Infectious Factors. AABB-NMC International Symposium Mastitis Milk Quality Proceeding, Vancouver, BC, Canada. p. 347-351.

Mein, G. A. 2012. The role of the milking machine in mastitis control. Vet. Clin. North Am. Food Anim. Pract. 28:307-320.

Miles, A. M., J. A. A. McArt, F. A. Leal Yepes, C. R. Stambuk, P. D. Virkler, & H. J. Huson. 2019. Udder and teat conformational risk factors for elevated somatic cell count and clinical mastitis in New York Holsteins. Prev. Vet. Med. 163:7-13.

Mitev, J. E., Zh. I. Gergovska & T. M. Miteva. 2012. Effect of teat end hyperkeratosis on milk somatic cell counts in Bulgarian Black-and-White dairy cattle. Bulg. J. Agric. Sci. 18:451-454.

Nasr, M. A. F., & M. S. El-Tarabany. 2017. Impact of three THI levels on somatic cell count, milk yield and composition of multiparous Holstein cows in a subtropical region. J. Therm. Biol. 64:73-77.

Neijenhuis, F., H. W. Barkema, H. Hogeveen, & J. P. T. M. Noordhuizen. 2000. Classification and longitudinal examination of callused teat ends in dairy cows. J. Dairy Sci. 83:2795-2804.

Nielsen, N. I., T. Larsen, M. Bjerring, & K. L. Ingvartsen. 2005. Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents. J. Dairy Sci. 88:3186-3200.

Pinzón-Sánchez, C., & P. L. Ruegg. 2011. Risk factors associated with short-term post-treatment outcomes of clinical mastitis. J. Dairy Sci. 94:3397-3410.

Ríos-utrera, Á., R. C. Calderón-robles, & J. R. Galavíz-rodríguez. 2013. Effects of breed, calving season and parity on milk yield, body weight and efficiency of dairy cows under subtropical conditions. Int. J. Anim. Vet. Adv. 5:226-232.

Ruegg, P. L., & J. C. F. Pantoja. 2013. Understanding and using somatic cell counts to improve milk quality. Irish. J. Agric. Food Res. 52:101-117.

Sadeghi-sefidmazgi, A. & F. Rayatdoost-baghal. 2014. Effects of herd management practices on somatic cell counts in an arid climate. Rev. Bras. Zootec. 43:499-504.

Sadek, R. R., G. Ashour, M. A. M. Ibrahim, & A. M. Samoul. 2014. Effect of daily weight gain on age at first calving and subsequent milk yield of Holstein heifers in Egypt. J. Anim. Prod. 51:164-171.

Sandrucci, A., L. Bava, M, Zucali, & A. Tamburini. 2014. Management factors and cow traits influencing milk somatic cell counts and teat hyperkeratosis during different seasons. Rev. Bras. Zootec. 43:505-511.

Schwarz, D., U. S. Diesterbeck, K. Failing, S. König, K. Brügemann, M. Zschöck, W. Wolter, & C. P. Czerny. 2010. Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany-a longitudinal study. J. Dairy Sci. 93:5716-5728.

Sebastino, K. B., H. Uribe, & H. H. González. 2020. Effect of test year, parity number and days in milk on somatic cell count in dairy cows of Los Ríos region in Chile. Austral J. Vet. Sci. 52:1-7.

Sharma, N., N. K. Singh, & M. S. Bhadwal. 2011. Relationship of somatic cell count and mastitis: An overview. Asian-Australas. J. Anim. Sci. 24:429-438.

Sharma, A., S. Sharma, N. Singh, V. Sharma, & R. S. Pal. 2016. Impact of udder and teat morphometry on udder health in Tharparkar cows under climatic condition of hot arid region of Thar Desert. Trop. Anim. Health Prod. 48:1647-1652.

Silva, J. E. D., S. B. P. Barbosa, B. da S. Abreu, K. R. Santoro, E. C. D. Silva, Â. M. V. Batista, & R. L. V. Martinez. 2018. Effect of somatic cell count on milk yield and milk components in Holstein cows in a semi-arid climate in Brazil. Rev. Bras. Saude Prod. Anim. 19:391-402.

Singh, R. S., B. K. Bansal, & D. K. Gupta. 2017. Relationship between teat morphological traits and subclinical mastitis in Frieswal dairy cows. Trop. Anim. Health Prod. 49:1623-1629.

Smith, K. L., Wooster, J. E. Hillerton, Compton, R. J. Harmon, & A. Lexington. 2001. Guidelines on normal and abnormal raw milk based on somatic cell counts and signs of clinical mastitis. National Mastitis Council.

Vissio, C., S. A. Dieser, H. L. Agnelli, L. M. Odierno, & A. J. Larriestra. 2014. Accuracy of the composite somatic cell count to detect intra-mammary infection in dairy cows using latent class analysis. Prev. Vet. Med. 113:547-555.

Wongpom, B., S. Koonawootrittriron, M. A. Elzo, & T. Suwanasopee. 2017. Milk yield, fat yield and fat percentage associations in a Thai multibreed dairy population. Agric. Nat. Resour. 51:218-222.

Yang, L., Q. Yang, M. Yi, Z. H. Pang, & B. H. Xiong. 2013. Effects of seasonal change and parity on raw milk composition and related indices in Chinese Holstein cows in northern China. J. Dairy Sci. 96:6863-6869.

Zeinhom, M. M. A., R. L. Abdel Aziz, A.N. Mohammed, & U. Bernabucci. 2016. Impact of seasonal conditions on quality and pathogens content of milk in Friesian cows. Asian-Australas. J. Anim. Sci. 29:1207-1213.

Zoche-Golob, V., H. Haverkamp, J. H. Paduch, D. Klocke, C. Zinke, M. Hoedemaker, W. Heuwieser, & V. Krömker. 2015. Longitudinal study of the effects of teat condition on the risk of new intramammary infections in dairy cows. J. Dairy Sci. 98:910-917.

How to Cite
Abdelghany, S., Fahim, N., Samir, F., & Radwan, M. (2021). The Use of Teat-End Hyperkeratosis to Predict Somatic Cell Count and Milk Quality of Holstein Cows Raised in Egypt. Tropical Animal Science Journal, 44(2), 213-221.